Zero Trust Architecture by NIST

1
766

NIST Zero Trust is a strategic approach to cybersecurity that secures an organization by eliminating implicit trust and continuously validating every stage of a digital interaction. Rooted in the principle of “never trust, always verify,” Zero Trust is designed to protect modern environments and enable digital transformation by using strong authentication methods, leveraging network segmentation, preventing lateral movement, providing Layer 7 threat prevention, and simplifying granular, “least access” policies.

The concept of zero trust has been present in cybersecurity since before the term “zero trust” was coined. The Defense Information Systems Agency (DISA) and the Department of Defense published their work on a more secure enterprise strategy dubbed “black core”. Black core involved moving from a perimeter-based security model to one that focused on the security of individual transactions. The work of the Jericho Forum in 2004 publicized the idea of deperimeterization—limiting implicit trust based on network location and the limitations of relying on single, static defenses over a large network segment. The concepts of deperimeterization evolved and improved into the larger concept of zero trust, which was later coined by John Kindervag1 while at Forrester.2 Zero trust then became the term used to describe various cybersecurity solutions that moved security away from implied trust based on network location and instead focused on evaluating trust on a per-transaction basis. Both private industry and higher education have also undergone this evolution from perimeter-based security to a security strategy based on zero trust principles.

Federal agencies have been urged to move to security based on zero trust principles for more than a decade, building capabilities and policies such as the Federal Information Security Modernization Act (FISMA) followed by the Risk Management Framework (RMF); Federal Identity, Credential, and Access Management (FICAM); Trusted Internet Connections (TIC); and Continuous Diagnostics and Mitigation (CDM) programs. All of these programs aim to restrict data and resource access to authorized parties. When these programs were started, they were limited by the technical capabilities of information systems. Security policies were largely static and were enforced at large “choke points” that an enterprise could control to get the largest effect for the effort. As technology matures, it is becoming possible to continually analyze and evaluate access requests in a dynamic and granular fashion to a “need to access” basis to mitigate data exposure due to compromised accounts, attackers monitoring a network, and other threats.

A typical enterprise’s infrastructure has grown increasingly complex. A single enterprise may operate several internal networks, remote offices with their own local infrastructure, remote and/or mobile individuals, and cloud services. This complexity has outstripped legacy methods of perimeter-based network security as there is no single, easily identified perimeter for the enterprise. Perimeter-based network security has also been shown to be insufficient since once attackers breach the perimeter, further lateral movement is unhindered. This complex enterprise has led to the development of a new model for cybersecurity known as “zero trust” (ZT). A ZT approach is primarily focused on data and service protection but can and should be expanded to include all enterprise assets (devices, infrastructure components, applications, virtual and cloud components) and subjects (end users, applications and other nonhuman entities that request information from resources).

Throughout this document, “subject” will be used unless the section relates directly to a human end user in which “user” will be specifically used instead of the more generic “subject.” Zero trust security models assume that an attacker is present in the environment and that an enterprise-owned environment is no different—or no more trustworthy—than any nonenterprise-owned environment. In this new paradigm, an enterprise must assume no implicit trust and continually analyze and evaluate the risks to its assets and business functions and then enact protections to mitigate these risks.

In zero trust, these protections usually involve minimizing access to resources (such as data and compute resources and applications/services) to only those subjects and assets identified as needing access as well as continually authenticating and authorizing the identity and security posture of each access request. A zero trust architecture (ZTA) is an enterprise cybersecurity architecture that is based on zero trust principles and designed to prevent data breaches and limit internal lateral movement. This publication discusses ZTA, its logical components, possible deployment scenarios, and threats. It also presents a general road map for organizations wishing to migrate to a zero trust design approach and discusses relevant federal policies that may impact or influence a zero trust architecture.

The attached PDF is the publication shared by NIST. If you like our posts, please show support by sharing it with your network on social media like linkedin.

1 COMMENT

LEAVE A REPLY

Please enter your comment!
Please enter your name here